ON THE CLOSED EINSTEIN-WEYL STRUCTURE AND COMPACT K-CONTACT MANIFOLD

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On K-contact Einstein Manifolds

The object of the present paper is to characterize K-contact Einstein manifolds satisfying the curvature condition R · C = Q(S,C), where C is the conformal curvature tensor and R the Riemannian curvature tensor. Next we study K-contact Einstein manifolds satisfying the curvature conditions C ·S = 0 and S ·C = 0, where S is the Ricci tensor. Finally, we consider K-contact Einstein manifolds sati...

متن کامل

ON N(k)−QUASI EINSTEIN MANIFOLD

In the present paper we have studied an N(k)-quasi Einstein manifold satisfying R(ξ, X).P̃ , where P̃ is the pseudo-projective curvature tensor. Among others, it is shown that if quasi-Einstein manifold with constant associated scalars is Ricci symmetric then the generator of the manifold is a Killing vector field. AMS Mathematics Subject Classification (2000): 53C25

متن کامل

Compact Einstein-Weyl four-dimensional manifolds

We look for complete four dimensional Einstein-Weyl spaces equipped with a Bianchi metric. Using the explicit 4-parameters expression of the distance obtained in a previous work for non-conformally-Einstein Einstein-Weyl structures, we show that four 1-parameter families of compact metrics exist : they are all of Bianchi IX type and conformally Kähler ; moreover, in agreement with general resul...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Some Results on the Structure of Conformally Compact Einstein Metrics

The main result of this paper is that the space of conformally compact Einstein metrics on any given manifold is a smooth, infinite dimensional Banach manifold, provided it is non-empty, generalizing earlier work of Graham-Lee and Biquard. We also prove full boundary regularity for such metrics in dimension 4 and a local existence and uniqueness theorem for such metrics with prescribed metric a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2016

ISSN: 1015-8634

DOI: 10.4134/bkms.b151057